Background

Negative consequences of natural hazards, such as earthquakes, tsunamis, volcanic eruptions, landslides, avalanches, wind storms, heavy rains, floods, heat and cold waves, prolonged droughts and subsequent water shortage have increased in recent years and resulted in major disasters around the globe. The impact of these events can be exacerbated by human activities, including uncontrolled urban and rural development, poorly-engineered infrastructures and buildings, as well as socio-economic and other human factors such as rapid population growth, increased population density in areas prone to hazard impact, and drastic changes in land use practices. Thus, many cities and populations are more exposed and vulnerable now than before. This is particularly the case for developing countries without adequate resilience capacities to cope with disasters, especially when subject to low probability-high impact events.

In some cases, the impact can be far-reaching and beyond our immediate comprehension. For example, in 2011 the Tohoku earthquake, followed by both a tsunami and a nuclear power plant disaster in east Japan, resulted in the displacement of more than two hundred thousand people, with disruptions in socio-economic activities experienced country-wide. In the context of a global economy, the effects of a disaster may have significant impacts on regions far from the site of the actual event and long after it occurred. Certain vulnerable groups can be affected even more severely.

In 2015, the international community agreed on three major accords: the Sendai Framework for Disaster Risk Reduction 2015-2030, the Sustainable Development Goals, and the Paris Agreement on Climate Change. The United Nations Office for Disaster Risk Reduction (UNISDR) Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015-2030 was held in January 2016 in Geneva, Switzerland. The role of science, technology and research in providing evidence and knowledge on disaster risks and ‘How to’ reduce risks have been emphasized in all major international and regional frameworks and agendas. Examples of recent efforts by IAP to address these issues include a panel on “Science advice in the time of emergencies” organized during the IAP Conference in Hermanus, South Africa, in early 2016. Likewise, the Accademia Nazionale dei Lincei-IAP conference in October 2016, “Florence 1966-2016 - Resilience of Art Cities to Natural Catastrophes: the Role of Academies”, proved that there are still considerable concerns towards the issues in this area.

Science, technology and research into issues relating to disaster risk reduction have progressed significantly on all fronts and across all sectors. Scientists and researchers have brought a deeper understanding of the hazards, vulnerabilities, disaster risks and their linkages to the development processes. However, there are ongoing challenges and gaps in translating this scientific information into policy so that disaster risk reduction policies are based on science and evidence. Given the different levels at which disasters can affect our society, it is essential that we consider how the physical and social sciences can be fully deployed in an integrated way, with technology, to reduce both disaster risks and their impacts.

1 Note: This Statement is a consolidation, with additions and revisions, of the Tokyo Statement, the Tokyo Action Agenda, a proposal entitled “the Promotion of International Study for Disaster Risk Reduction and Resilience and the Reduction of Disaster Risks”, and a statement entitled “Strengthening Disaster Resilience is Essential to Sustainable Development”. The Tokyo Statement was adopted in January 2015 and the Tokyo Action Agenda was approved at the same time at the Tokyo Conference on International Study for Disaster Risk Reduction and Resilience. “Promotion of International Study for Disaster Risk Reduction and Resilience and the Reduction of Disaster Risks” was issued by the Science Council of Japan in February 2016, and “Strengthening Disaster Resilience is Essential to Sustainable Development” was published in April 2016 as part of the G-Science Academies Statement 2016.

2 See: http://www.unisdr.org/partners/academia-research/conference/2016/

3 See: http://www.interacademies.net/News/29857.aspx

4 See: http://www.interacademies.net/2952/30966.aspx
Key directions

Strategies need to be developed in order to reduce disaster risks before an event, manage the emergency as it happens, ensure effective recovery afterwards, and enhance resilience. Hence, it is essential that there are concerted international actions to address:

- implementation of the existing scientific and engineering knowledge into general practice;
- how society should promote disaster risk reduction and resilience;
- how science and technology can support such societal efforts while incorporating good practices based on local knowledge; and
- methodologies for the creation of demand for safety and integration of safety with economic benefits.

To support the building of societies that are more resilient to disasters, concerted and coordinated international action is necessary to ensure that all stakeholders, including policymakers, practitioners, private enterprises and community groups, understand disaster risks and are able to access and utilize the latest scientific knowledge and applicable technology. Reducing disaster risks and building a resilient society is the shared responsibility of all stakeholders and brings benefits to all. Consequently, each country should develop a common platform for all stakeholders to discuss these issues, taking into consideration the need to provide diverse stakeholders with opportunities for engaging in discussions with scientists in local languages. These discussions will empower citizens to strengthen community-based disaster risk management while addressing local challenges concerning gender, vulnerable groups and other issues. For example, the Council of Europe has recognized the special vulnerability of people with disabilities and their legal protection. Science and technology can offer innovative solutions for increasing their resilience.

It is essential that governments, private entities, international agencies and science academies invest appropriate funding necessary for the capacity enhancement of the scientific community to collect the required data, and develop methodologies and analytics to create new approaches for integrating associated social needs and physical processes to reduce risks associated with natural hazards. These goals require an interdisciplinary approach involving researchers from the natural sciences, engineering, medical science, social sciences and humanities, with continuous input from all stakeholders.

Recommendations

1) Promote and strengthen the development of a common platform at the national level through which all stakeholders and scientists maintain constant dialogues in local languages, and assist the efforts of the governments and citizens in disaster risk reduction and resilience by creating stronger inter-disciplinary and trans-disciplinary ties.

- Establish a disaster monitoring system that is comprehensive, high-quality and sustainable, with support from space-based earth observation and, when appropriate, supported by crowdsourcing.
- Conduct integrated assessments of the socio-economic impacts of disaster risks and possible measures for disaster risk reduction and resilience.
- Use big data technologies and strengthen the capacity for their use in monitoring and reporting progress.
- Improve understanding of the earth processes and history at various stakeholders’ levels and disseminate knowledge about solid earth, atmosphere, ocean and human actions and their interplay to a wider audience.
- Improve disaster literacy by providing systematically organized education, as well as developing good practices and effective approaches for communication and education of all stakeholders. The training should include discussions about vulnerable groups, including women, and their specific needs.
- Develop guidelines for strengthening national and local platforms for disaster risk reduction and their coordination mechanisms through enhanced contributions from science and technology with due consideration of traditional knowledge systems.
2) Assign an important role in disaster risk reduction to disaster
disaster science, disaster mitigation engineering, environmental science, and
social sciences; particularly sociology, geography and economics,
health science, earth science, earth observation, and other relevant
areas. In collaboration, these areas should create a framework to
ensure inter-disciplinary efforts to increase the resilience of local
communities to disasters.
• Strengthen links between disaster science and environmental
science to enhance risk governance and negotiate the gap
between time-scale and political urgency for the reduction of
disaster and environmental risks in an inclusive manner.
• Develop better engineering methods and materials to improve the
safety of structures, including mega structures. Also, retrofit and
strengthen existing vulnerable structures as soon as possible.
• Develop a health management system to support citizens’ health
and mental conditions all through the post-disaster process, from
emergency rescue efforts to rehabilitation and reconstruction.
• Provide information that facilitates the investment necessary
for building a resilient society, and inform citizens of disaster
risks by providing impact-based early warning information and
mapping of risks.
• Develop portable and community-usable warning and response
systems applicable to cases such as landslides, floods, etc.,
which are common to numerous localities.
• Develop standard operating procedures for science advice,
inputs and communication at the time of disaster emergency
situations.
• Understand the root causes and drivers of disasters through
detailed investigations of events, lessons learned, successes and
failures in order to promote sustainable risk management and
risk reduction through evidence-based research.

3) Promote scientific and technological research at local, national
and international levels to establish inclusive, effective and
sustainable national platforms to support the efforts in disaster risk
reduction and resilience through trans-disciplinary cooperation.
• Establish and implement an institutional system that ensures
scientific knowledge-based decision making on disaster
management at all levels, such as compulsory risk impact
assessment, including the roles of science and technology in
monitoring, measuring, predicting, modelling and mitigating
disaster risks, prior to any development permission.
• Conduct consolidated and integrated syntheses of global-scale
disaster studies on a regular basis.
• Create international consultation functions through which the
science and technology community provides professional advice
to support locally-based risk reduction activities, taking into
account diverse local characteristics.
• Promote effective utilization of unexplored scientific disaster
data coming from research projects especially in developing
countries.
• Share among countries their experiences about the
implementation of open big data discovery, geospatial data
interoperability and infrastructure related to the assessment of
disaster risk and resilience.
• Better coordinate existing networks and scientific research
institutions at all levels and all regions to advance disaster risk
reduction.
• Develop appropriate metrics so that nations can document and
monitor their progress and improvements.

4) For effective implementation of existing knowledge into the
development process and people’s daily lives, we need to create
demand-driven science for safety, especially in developing
countries where safety is not necessarily a top priority for either the
government or the public. Creating demand can be done through:
• Strengthening risk communication for making peoples’ demand
for safe housing, safe cities, safe infrastructure, reliable energy,
good water management and clean air, a public good.
• Translating the demand for safety into an economic benefit
and integrating safety with incentives for enhanced economic
benefits.
• Implementing building codes, safety standards and land use
regulations, and taking other small and affordable measures
to ensure safety such as the development of standards for the
evaluation and ranking of buildings for quality and safety.
Working Group (nominating academy)

- Chair: HARUYAMA Shigeko, Science Council of Japan
- ANDERSON-BERRY Linda, Australian Academy of Science
- ASHTIANI Mohsen Ghafori, Academy of Sciences of the Islamic Republic of Iran
- BUSHATI Salvatore, Albanian Academy of Sciences
- CUTTER Susan L., National Academy of Science, USA
- DURRHEIM Raymond, Academy of Science of South Africa
- FANG Chen, Chinese Academy of Sciences
- GABRICHIDZE Guram, Georgian National Academy of Sciences
- LIZARRALDE Gonzalo, Royal Society of Canada
- MARENGO Jose Antonio, Brazilian Academy of Sciences
- SEMINARA Giovanni, Accademia nazionale dei Lincei, Italy
- SINGH R.B., Indian National Science Academy
- SPARKS Steve, Royal Society, UK
- URRUTIA-FUCUGAUCHI Jaime, Mexican Academy of Sciences

The InterAcademy Partnership for Science

IAP for Science is a global network of the world’s science academies. Launched in 1993, its primary goal is to help member academies work together to advise citizens and public officials on the scientific aspects of critical global issues. Its membership comprises 113 academies of science.

Statement on Science and Technology for Disaster Risk Reduction from the member academies of IAP for Science

This Statement has been endorsed by the majority of IAP for Science’s 113 member academies.

Additional copies of this statement can be downloaded from: http://www.interacademies.net/10878/31951.aspx

IAP for Science
ICTP Campus, Strada Costiera 11, 34151 Trieste, Italy
Contact: iap@twa.org
www.interacademies.net

This work is © the InterAcademy Partnership and is licensed under Creative Commons Attribution 4.0 International

November 2017