BIODIVERSITY!

How can we balance the needs of people with the needs of other living things?
Biodiversity!
How can we balance the needs of people with the needs of other living things?
Community Research Guide

Smithsonian Science for Global Goals Development Team

Lead Guide Developer/Writer
Logan Schmidt

Executive Director
Dr. Carol O’Donnell

Division Director
Laurie Rosatone

Smithsonian Science for Global Goals Series Developers
Heidi Gibson
Andre Radloff
Logan Schmidt

Lead Product Specialist
Hannah Osborn

Digital Media and Communications Team
Sofia Elian
Cara Hackett

Contributing Interns
Maggie New
Vivian Zohery

Smithsonian Science Education Center Staff

Executive Office
Kate Echevarria
Angela Pritchett

Advancement & Partnerships
Holly Glover, Division Director
Inola Walston

Professional Services
Dr. Amy D’Amico, Division Director
Katherine Blanchard
Katherine Fancher
Katie Gainsback
Dr. Hyunjoo Lee
Sherrell Lewis
Nejra Malanovic
Alexa Mogck
Eva Muszynski

Smithsonian Science for the Classroom Developers
Dr. Sarah J. Glassman
Melissa Rogers
Mary E. Short
Dr. Katya Vines

Finance & Administration
Lisa Rogers, Division Director
Agnes Robine

Acknowledgments – Page iii
© 2022 Smithsonian Institution
Senior Project Advisors

John Boright
Executive Director, International Affairs National Academy of Sciences
Washington, DC, USA

Peter McGrath, PhD
Coordinator
InterAcademy Partnership
Washington, DC, USA

Jacob Sherson
Founder and Director
Janet Rafner
Director of Learning
Arthur Hjorth
Postdoctoral Researcher
Ida Bang Hansen
Intern
ScienceAtHome
Aarhus University
Aarhus, Denmark

Research Mentors

Anish Andheria, PhD
President & CEO, Wildlife Conservation Trust
Mumbai, Maharashtra, India

Steven Canty, PhD
Coordinator of the Marine Conservation Program, Smithsonian Marine Station
Fort Pierce FL, USA
Working Land and Seascapes, Conservation Commons, Smithsonian Institution
Washington DC, USA

Amelia-Juliette Demery, M.S., PhD Candidate
Lovette Lab, Ecology and Evolutionary Biology, Cornell University
Ithaca, New York, USA

Reynaldo Linares-Palomino, PhD
Managing Director, Peruvian Andes Biodiversity Assessment and Monitoring Program, Smithsonian Conservation Biology Institute
Lima, Peru

Monique Pipkin, PhD Candidate
Department of Ecology and Evolutionary Biology, Cornell University
Ithaca, New York, USA

Angela Mashford-Pringle, PhD
Associate Director/Algonquin Waakebiness-Bryce Institute for Indigenous Health, Dalla Lana School of Public Health, University of Toronto
Toronto, Ontario, Canada

Dr. Christine Sprunger
Assistant Professor of Soil Science and Rhizosphere Processes, The Ohio State University
Columbus, Ohio, USA

Frederick Tutman
Patuxent Riverkeeper, Faculty, Goddard College, Adjunct Professor, Washington School of Law American University
Upper Marlboro, Maryland, United States

Ximena Velez-Zuazo, PhD
Managing Director of Peru Programs
Center for Conservation and Sustainability
Smithsonian Conservation Biology Institute
Lima, Peru
Project Advisors

Nancy J. Bechtol, CFM
Director, Smithsonian Facilities, Smithsonian Institution
Washington DC, USA

Alison Cawood, PhD
Director of Public Engagement, Smithsonian Environmental Research Center
Edgewater, Maryland, USA

M. Carmen Chavez, MSc.
Tropical Biologist, National Geographic Explorer.
Miami, Florida, USA

Jon Cox
ACEER Foundation, president
Assistant Professor of Art and Design
University of Delaware
Unionville, Pennsylvania

Jessica Deichmann, PhD
Research Scientist, Center for Conservation and Sustainability, Smithsonian Conservation Biology Institute Working Land and Seascapes
Conservation Commons
Washington, DC

Anna Feistner, PhD
Director, Gabon Biodiversity Program at Smithsonian’s National Zoo and Conservation Biology Institute
Gamba, Gabon

Kimberly Komatsu, PhD
Principal Investigator, Senior Scientist, Smithsonian Environmental Research Center
Edgewater, Maryland, USA

Cosette Larash
Citizen Science Program Assistant, Smithsonian Environmental Research Center
Edgewater, Maryland, USA

Tara Muenz, MS
Assistant Director of Education and Leaf Pack Network® Administrator Stroud Water Research Center
Avondale, Pennsylvania, USA

Mario Napravnik Pesce
Biólogo
Gerente General Rainforest expeditions SAC
Tambopata, Madre de Dios, Perú

Kristin Saltonstall, PhD
Molecular Ecologist, Smithsonian Tropical Research Institute
Panama City, Panama

Dennis Whigham, PhD
Senior Botanist, Smithsonian Environmental Research Center
Edgewater, Maryland, USA

Biodiversity! Acknowledgments – Page v © 2022 Smithsonian Institution
Technical Reviewers

Brian Coyle, PhD
Program Manager, Smithsonian Institution,
National Zoological Park & Conservation Biology
Institute
Washington DC, USA

Jessica Deichmann, PhD
Research Scientist, Center for Conservation and
Sustainability, Smithsonian Conservation Biology
Institute Working Land and Seascapes
Conservation Commons
Washington DC, USA

Kimberly Komatsu, PhD
Principal Investigator, Senior Scientist, Smithsonian
Environmental Research Center
Edgewater, Maryland, USA

Gary Krupnick, PhD
Research Scientist, Smithsonian National Museum
of Natural History
Washington DC, USA

Field Test Sites

Linda Aaron, Jonathan Gonzalez
Natural History Museum of Utah
Salt Lake City, Utah, USA

Michael Oteng Attakora
Kumasi Wesley Girls’ High School
Kumasi, Ghana

Constanza Azzolina,
Mariana Sepiurka, Valeria Viva
XSTEM
Buenos Aires, Argentina

Chuck Barlow Jr., MSc-Executive Director
Saving Our Sons & Sisters International (SOSSI)
Atlanta, Georgia, USA

Judy Bar
erre
Holy Family Parish School-Kirkland
Kirkland, Washington, USA

Douglas L. Bradley
Petaluma, California, USA

Stacy DeVeau, MS Ed
University of Arizona
Prescott, Arizona, USA

Christine Earnhart
Ladue Middle School
St. Louis, Missouri, USA

Rosina Garcia
San Diego Unified School District
San Diego, California, USA

Kevin Hengelbrok
St. Edmund’s Academy
Pittsburgh, Pennsylvania, USA

Andrea Inserra
Indian River Central School District
NYS Master Teacher Program Emeritus
Philadelphia, New York, USA

Phillip K. Kight
Colgan High School
Manassas, Virginia, USA

Julia Elizabeth Little
Westover Senior High School
Fayetteville, North Carolina, USA

Kseniia Minakova
The National Technical University
Kharkiv, Ukraine

Tristan Orbeta
University of the Philippines—Diliman
Quezon City, Philippines

Maree Pascall, Kasey Liehr
Girl Scouts of Northeast Texas
Dallas, Texas, USA

Talat Seema, Atifa Raza, Noreen Noor,
Mohammed Faheem Shahid, Shahnila Zia
Dawood Public School
Karachi, Pakistan
Melanie Shaver, EdD.
Foothills Community School
Marion, North Carolina, USA

Terry Snow
Rogers Ranch Elementary
Laveen, Arizona, USA

Lori Townsend
Charlotte Country Day School
Charlotte, North Carolina, USA

Katherine E. Ward
Aragon High School
San Mateo, California, USA

Jason Watts
Dorris Intermediate School
Collinsville, Illinois, USA

Lexi Willis
Mary Passage Middle School
Newport News, Virginia, USA
Smithsonian Science Education Center

The Smithsonian Science Education Center (SSEC) is an education organization within the Smithsonian Institution. The SSEC’s mission is to transform K–12 Education Through Science™ in collaboration with communities across the globe. The SSEC promotes authentic, interactive, inquiry-based K–12 STEM teaching and learning; ensures diversity, equity, accessibility, and inclusion in K–12 STEM education; and advances STEM education for sustainable development. The SSEC achieves its goals by developing exemplary curriculum materials and digital resources; supporting the professional growth of K–12 teachers and school leaders; and conducting outreach programs through LASER (Leadership and Assistance for Science Education Reform) to help schools, school districts, state education agencies, and ministries of education throughout the world implement inquiry-based science education programs.

Smithsonian Institution

The Smithsonian Institution was created by an Act of Congress in 1846 “for the increase and diffusion of knowledge . . .” This independent federal establishment is the world’s largest museum, education, and research complex and is responsible for public and scholarly activities, exhibitions, and research projects nationwide and overseas. Among the objectives of the Smithsonian is the application of its unique resources to enhance elementary and secondary education.

Smithsonian Science for Global Goals (SSfGG) is a freely available curriculum developed by the Smithsonian Science Education Center (SSEC) in collaboration with the InterAcademy Partnership. It uses the United Nations Sustainable Development Goals (SDGs) as a framework to focus on sustainable actions that are student-defined and implemented.

Attempting to empower the next generation of decision-makers capable of making the right choices about the complex socio-scientific issues facing human society, SSfGG blends together previous practices in Inquiry-Based Science Education (IBSE), Social Studies Education (SSE), Global Citizenship Education (GCE), Social Emotional Learning (SEL), and Education for Sustainable Development (ESD).

Throughout the Smithsonian Science for Global Goals community research guides we have included quotes from many different individuals. These quotes represent the personal and professional perspectives of each individual and were not edited. We recognize that individuals have unique perspectives, experiences, ways of knowing, and expertise.
Thank You for Your Assistance

Thank You for Your Support

This project was supported by the Gordon and Betty Moore Foundation through Grant GBMF#9029 to the Smithsonian Science Education Center.
How can we balance the needs of people with the needs of other living things?

Part 1: What is a balanced community and how does it relate to me?
- Task 1: What is the problem?
- Task 2: How is the problem of balanced communities related to me?
- Task 3: What skills do we need to do our research?
- Task 4: Where do we notice the problem?
- Task 5: How will we achieve our goals?

Part 2: How can including people help create a balanced community?
- Task 1: Who is in our community?
- Task 2: How has our community changed over time?
- Task 3: Who makes decisions in our community?
- Task 4: How can including our community help us make better decisions?
- Task 5: How do we include the community in our actions?

Part 3: How can I balance the needs of people and other living things in my community?
- Task 1: What living things are in our research area?
- Task 2: What do the living things in our research area need to survive?
- Task 3: What do the people in our community need to survive?
- Task 4: What are the conflicts between people and other living things in my community?
- Task 5: How can I take action to balance needs in my community?
Part 4: How can I balance the needs of people and animals in my community?

- Task 1: What animals are in our research area?
- Task 2: What do the animals in our research area need to survive?
- Task 3: What are the conflicts between people and animals in my community?
- Task 4: What are people already doing to balance the needs of people and animals?
- Task 5: How can I take action to balance needs in my community?

Part 5: How can I balance the needs of people and plants in my community?

- Task 1: What plants are in our research area?
- Task 2: What do the plants in our research area need to survive?
- Task 3: What are the conflicts between people and plants in my community?
- Task 4: What are people already doing to balance the needs of people and plants?
- Task 5: How can I take action to balance needs in my community?

Part 6: How can I balance the needs of people and soil organisms of my community?

- Task 1: What soil organisms are in our research area?
- Task 2: What do the soil organisms in our research area need to survive?
- Task 3: What are the conflicts between people and soil organisms in my community?
- Task 4: What are people already doing to balance the needs of people and soil organisms?
- Task 5: How can I take action to balance needs in my community?

Part 7: How will we act to help create a balanced community?

- Task 1: What is the problem we want to take action on in our community?
- Task 2: How will we try to solve our problem?
- Task 3: How will our team take action in our community?
- Task 4: Putting your plan into action
- Task 5: What did I learn?
Dear Parents, Caregivers, and Educators,

As a global community we face many challenges—biodiversity loss, climate change, pandemics. At times, these worldwide problems can seem overwhelming. We may ask ourselves questions about how to understand these complex problems and whether there's anything we can do to make them better. This community research guide encourages young people to discover, understand, and act on the answers to these questions.

In the years leading up to 2015, people around the world worked together to share their ideas about how our world should be. These ideas became a list of goals, the United Nations Sustainable Development Goals. The goals represent a plan for a sustainable world: a world where peaceful societies collaborate; a world where we live in balance with the environment of our planet; a world in which our economies fulfill our needs; a world that is fair to all.

As youth around the globe engage with the activities in this guide, they will gain an understanding of the science that underlies the Sustainable Development Goals—in particular, Goal 14: Life Below Water and Goal 15: Life on Land. They will be able to share their knowledge with their community, create tangible ways to help their community make informed decisions, and understand the best places to find additional information on the topics.

Throughout the guide, young people may find themselves asking many questions about the needs of people and other living things in their community and how they can play a role in helping balance those needs. You do not need to have the answers to any of these questions. The most important thing you can offer young people is the opportunity to question, investigate, think critically and systemically, synthesize, and act.

One of the best ways to ensure a sustainable planet is by arming yourself with knowledge and then using that knowledge to make a difference in the world. The same is true for young people. But young people may require support and guidance from you to put their new knowledge into context. Ask the young people around you how they are feeling and what they are thinking about as they learn this content. Validate the questions they ask you, even if they ask them repeatedly.

Throughout the world, everyone—even children—strive for healthy ecosystems, clean air and water, and a reduction in habitat loss, pollution, and overextraction of resources. Creating balance between the living things in communities can give us these things.

I am immensely grateful to the experts who helped to develop this guide—the InterAcademy Partnership (IAP), a collaboration of 140 national academies of sciences, engineering, and medicine; our colleagues across the Smithsonian Institution; and the external subject matter experts who contributed to this guide—for their perspectives and technical support in ensuring the science in this guide is accurate. I also want to say a special thank you to the author and developer of this guide, Logan Schmidt, for her tremendous expertise and understanding of science education and expertise in the life sciences, for her careful research and ability to translate complex ideas into meaningful content for youth, and for her thoughtful contributions to the Smithsonian Science for Global Goals project.
Working together—scientists, researchers, parents, caregivers, educators, youth—we can make a better world for all. This guide is a step toward that grand collaboration.

Thank you for partnering with us to inspire our youth to build a better world.

Best,

Dr. Carol O’Donnell, Director
Smithsonian Science Education Center
About this Community Research Guide

The goal of this guide is to prepare young people to take considered action on pressing global issues. Considered action means young people learn about a problem, connect it to the larger system, consider all the complexities of the problem, decide for themselves the best way to address it, and then execute a solution. Through this process young people are prepared not only to take considered action on a specific issue, but to build the skills to take action on all issues that affect them and their communities.

Learners use scientific and socio-scientific investigations to understand their local communities, scientific principles, and innovation possibilities. They then have a chance to immediately apply this information to make decisions that are informed by the results of their investigations. Along the way, young people are prompted to reflect, investigate, think critically, analyze, and build consensus. Engaging in these activities builds important skills of empowerment and agency, open-mindedness and reflection, equity and justice, and global-local interconnection. These sustainability mindsets prepare young people to take an active role in shaping the future of their communities and their world.

A Framework to Discover, Understand, and Act

Throughout the guide, young people are prompted to Discover, Understand, and Act. The three parts of their learning journey are described here.

Discover

Young people already have a lot of information and opinions about the world around them. In this guide, they are prompted to use that knowledge as an entry point. They will discover what they already know and what questions they might have. They are encouraged to consider different perspectives and priorities. This both empowers young people and provides an immediate relevance and context for their investigations.

Understand

Gathering new information is a primary goal of science. Using a wide variety of methods to do so helps young people understand the problems related to balanced communities. They need to understand the problems both abstractly and within the context of their local community. Designing and conducting real-world investigations and interpreting results encourages young people to think like scientists.

Act

Finally, young people apply both their existing knowledge and their newly gathered information. First, they consider personal changes they could make to help make their communities more
balanced. Then, as a team, young people find consensus on what they could do, what they should do, and what they will do. Teams then take action and reflect on the consequences, both intended and unintended.

Pedagogy Shift

This guide may feel like a big shift from the standard method of teaching. The guide is:

Led by Young People

To make progress toward a better world, we need the ideas, enthusiasm, and energy of every young person. We need them to help design and build the world in which they want to live. This means throughout the guide young people make authentic decisions about what and how they will learn. Their goal is to understand issues in their own community and take sustainable actions to make their community and their world better.

Driven by Data Collected by Young People

In this guide, the young people you teach will become action researchers. They will gather information about what sustainable communities mean in their own local spaces. This includes scientific investigations and experiments to understand the problems better, and also using social science methods to understand their community better. Using science and social science helps young people arrive at a sustainable solution.

Focused on Action

The goal of the guide is to help young people not just learn but also do. Throughout the guide young people will conduct investigations and then use that knowledge to make decisions about the actions that would be best for their community. They will then put those decisions into practice and see the results of their actions.

Customized for Local Communities

Each community is unique. While the world has global problems, the solutions must work locally. Young people already have tremendous knowledge about their local community. This guide prompts them to use that knowledge and find out new information to drive actions toward local solutions that are sustainable in their community. This guide also helps young people understand that information is gained in many ways including formal science education, personal experience, and inter-generational conversations. Their local context determines what kind of information is available and valued. Young people are encouraged to consider multiple sources of knowledge or expertise while using the guide.

Structure of this Community Research Guide

Parts

This guide is made up of seven parts. Each part works with the others to help learners understand how to help create a balanced community and to put that knowledge to work by taking action.

However, we recognize that time is a limiting factor in many learning spaces. Therefore, the guide is designed flexibly so it can be shortened, if necessary. The learners are guided to do this shortening work themselves at the end of Part 1. The guide prompts learners to discuss with their teacher how much time is available and then make decisions about the best way to use that time.
Tasks
Within each part there are five tasks. Each task helps learners examine a different aspect of the topic they are exploring. Within each task, there are three activities, which correspond to the Discover, Understand, Act framework. Discover activities focus on existing learner knowledge. Understand activities focus on gathering new information. Act activities focus on analyzing and applying that new information to make decisions. Tasks also include perspectives and stories from experts around the globe, so students can connect with the work of real-world scientists.

Using this Guide

Roles

The Learner’s Role
Learners are the decision-makers of the guide. They will decide what information they need and what the information they gather means. Then learners use that information to decide and implement actions.

The Teacher’s Role
This guide may be challenging for learners, since they may be unfamiliar with their role. Learners may need assistance in deciding what to do. Support and help them, but do not decide for them. Be patient. There are no right answers to the big questions posed by the guide.

Adapting the Guide for Your Context

Different Ages
This guide is designed to be used with young people between the ages of 8 and 17. This large range is deliberate to give access to these ideas to as many young people as possible. If you teach learners who are on the younger end of the age range you may need to support them a little more. For example, you might need to:

- Explain more complex words or topics.
- Promote listening and tolerance in group discussions.
- Support group decision-making.
- Help them plan investigations in their community or accompany the teams on their investigations.
- Help learners think through the feasibility of the action they plan.
- Present alternate ways of capturing ideas. For example if the guide suggests that learners write, but that is too difficult or is inappropriate for your learners, they can always draw, act out, or just talk about their ideas.

If you teach learners who are on the older end of the age range the language of the guide might seem a little simple. However, older learners who can understand more complex ideas will be able to develop a more nuanced view of the problem and come up with more extensive solutions.

All young people should be able to engage with the guide in a way that is developmentally appropriate for them.
Different Resources
We have assumed that you have very basic classroom resources, such as a class board (blackboard or whiteboard), paper, and pens/pencils. If it is not possible to capture learner writing, you can always have learners act out or discuss their ideas. If you do not have the capacity to print out a Community Research Guide for each learner, you or learner leaders can read the guide out loud from a single print or digital copy.

Accessibility
This guide is designed to be widely accessible. The language, tone, and format attempt to be as inclusive as possible to reach learners with a wide variety of learning styles. However, learners with specific needs may need teacher support. As mentioned earlier, the guide activities can always be adapted to fit learner abilities, either by you or by the students themselves.

Extensions
For each part and many tasks there are additional activities, videos, and resources available digitally. They can all be found at the Biodiversity! storymap at https://bit.ly/3zvJ2Qh.

Teams
Much of the research, decision-making, and acting is designed to be done in teams. However, these teams can range in size from a group of two or three learners to the whole class. As a teacher, this is something to consider before beginning the Community Research Guide.

If you have motivated and responsible learners who need minimal teacher support, you may want to break your class into small teams. Smaller teams will allow individual learners to share their opinions and have more of an impact on team decision-making. With smaller teams, the experience can be more customized to the interests of the individual learner because there are fewer interests represented.

If you have learners who need more support, you may need to keep the class together in one team or have one team for each adult in the class. If you have only one team per adult, an adult can help support learners directly while they are engaging in activities such as conducting investigations and making decisions. However, because the team is larger, individual learners will have less of a voice in decision-making and less impact on group actions.

Alternately, if you have a group of learners with mixed abilities, you can design groups that bring together learners with different strengths. These types of groups can help learners support one another rather than immediately turning to an adult for support.

If you are uncertain whether a small or large group is most appropriate for your learners, you may want to wait and observe them during Task 1. In Task 1 in the Understand activity, learners break into groups and conduct investigations. If learners are able to complete this task independently with fairly limited teacher support, they would probably be successful in a small group. If learners need a great deal of help to complete this activity, you may want to structure group size so they can have more focused adult support throughout the Community Research Guide.
Getting Started

We recommend you give the young people you work with the Student Letter to read. You also may find it useful to read through each part of the Community Research Guide in its entirety before beginning that part. We suggest you encourage your learners to be excited about this new learning adventure. Be prepared to be enthusiastic about their ideas.
Dear Student,

This is the last time you will be called a student in this Community Research Guide. Instead, you will take on a new role as an action researcher. Action researchers are interested in figuring out what to do to make their communities better. They use scientific investigations to help understand the natural world around them. They use social science investigations to help understand the people, cultures, and history of their communities. Then they use the information they gather to help solve problems in their own communities. This guide will help you learn more about this process. The most important thing to know is that you will control your own research and make your own decisions.

Think back to a time when you solved a problem. You first needed to know what you wanted, your goal. Then you needed to figure out what you needed to do to achieve your goal. This guide is similar. You will think about goals you have for your local community, then figure out what you need to take action to help reach those goals.

You and your classmates will work as a team to think about information you already have about the place where you live. Then you will investigate your local community and how things work. Finally, your team will decide how to make things better. Together you will put your decision into action. Sometimes, making decisions about what to do is difficult. Don’t worry, this guide will give you lots of support.

How to Use this Guide

This guide is designed to help you explore and think about problems in your community. The guide is here to help you. That means you can always change it.

Adapting the Guide

You will notice that in this guide there are often suggestions of different ways of sharing your ideas or doing investigations. This is because different people think and work best in different ways. For example, some people like to draw, some people like to talk out loud, and some people prefer to write to express their ideas. This guide has suggestions, but you can always change the method suggested. You can share your ideas using discussions, acting, signing, telling stories, recording your voice, writing by
hand, typing on a computer, drawing, or another way you choose. Think about the way you and your team learn best together. Including everyone on the team is important.

Safety Tips

This guide asks you to do and think about things that may seem unfamiliar. You will notice physical and emotional safety tips in the guide. These will help you stay safe and supported during the activities. Make sure you follow your teacher’s directions about staying safe.

Guide Structure

There are seven parts in this guide. Each part has five tasks. Each task has three activities. The activities are called *Discover, Understand, and Act*. In the *Discover* activities you will focus on thinking about information that you and your team already know. In the *Understand* activities you will investigate to find out new information. In the *Act* activities you will put your existing and new knowledge into action by applying it and making decisions. Words that may be unfamiliar will be in **bold** the first time they are used. Then at the end of each part a glossary lists the definitions of these words.

Investigations

You are the one doing the research in this guide. This means often you will develop your own questions and determine the best way to answer them. Developing and answering questions is how scientists find out new information about the world around them. As an action researcher, you need to think like a scientist to discover what you need to know, investigate to find out more information, and think about the meaning of what you found out.

Keeping Organized

In this guide you will have some papers you will need to keep so you can look at them later. You may want to have a folder, notebook, or scientific journal to help you stay organized.
Teams
You will be working with other classmates as part of a research team. Your team will conduct investigations and make decisions together. When conducting research, there may be many things to figure out as a team. You will need to be creative. There will not always be a clear right and wrong answer. Sometimes the team might not agree. This is okay. Just make sure to respect your teammates. There is no one right answer to the problems faced by your community. There is just the right answer for you and your team.

Getting Started
You will be thinking about complex problems. Sometimes this can feel difficult. Be patient. You will be guided to consider different parts of the problem. By the time you are making big decisions, you should have lots of information. Always remember, your work is important. Decisions you make can change your community. You are an important part of making your local and global communities better.

Thank you for working to make your community better.

The Smithsonian Science for Global Goals team
Smithsonian Science Education Center
Smithsonian Institution