

18th March 2025

A new granular and scalable model for stochastic WUI fire spread behaviour

Dr Savvas Gkantonas

Department of Engineering, University of Cambridge, Cambridge, UK

Pinepeak Ltd, London, UK

International Workshop on Wildfire Modeling & AI, Madrid

Contact: <u>sg834@cam.ac.uk</u>, <u>savvas.gkantonas@pinepeak.co.uk</u>

Why wildfires? Personal motivation

- Combustion science: vital for many fields
- Mati fire in Greece (23 July 2018)
 - Fire speed ~4 km/h
 - 104 deaths

Mati fire aftermath

WUI fire phenomenology

Wind direction on the day of the fire

Mati: One year later

Wind direction on the day of the fire

"Patchy" behaviour very different from wildland fires; confirmed in most WUI fires

- Building to building, tree to building, and building to tree spreading
- Some trees protected by (brick) buildings; pine vs other trees burnt very differently
- Some buildings more vulnerable: more fuel in the alleys/gardens, different materials, different entry point

What is the mechanism of wildfire spread?

- Convection, radiation, firebrands (from trees and houses)
- Flammability depends on vegetation/material and climatic conditions
- Terrain and local flow matter a lot → complexity and fine-grained detail
- Every fire is not the same: **stochastic** phenomenon

The model: overview

- Very fast and stochastic
- "Emitter" (burning cell) "Bridge" (particles) "Receiver" (landing cell)
- Uses weather/climatic conditions and extinction as appropriate
- Flammability and terrain info from fire behaviour and satellite data

CELLULAR AUTOMATON Uses a grid/map

Terrain + flammability

LAGRANGIAN Virtual flame particles Random walk

Basic principle: if cell visited from a "live" particle \rightarrow ignition

Mastorakos et al. (2022) Proc. Combust. Inst. 39(3), 3853-3862.
Efstathiou et al. (2023) Fire Safety Journal 138, 103795..

Inspiration: jet engine combustor ignition model

P. M. de Oliveira et al. (2021) IJSCD 13, 20-34

* ABL: atmospheric boundary layer

Local turbulent fire spread

The model: motion & energy

- Basic stochastic differential equations for <u>hot gases random walk</u>
- Built-in "start & stop" spread and decay mechanisms

The model: flammability

OF

)(TE

MBRIT

- Flammability "reinvented" by mapping and discretising the heat release (mass loss) rate
- Readily adjusted to existing fire behavior fuel and ROS models

The model: granularity & WUI

Unifying modelling framework – "must fit in a pixel"

Any inhomogeneous terrain for either wildland, WUI or urban

built on existing datasets augmented by computer vision & backtesting

[1] Maranghides et al. (2022), NIST TN 2205.

Toy problems

Circular front; no wind

Point ignition; wind

Line ignition; wind

Obstacle; wind

Marshall WUI fire

Marshall fire, 31 Dec 2021

Athens WUI fire

- burnt plot of land
- virtual fire particles used in the model to simulate fire propagation from one plausible scenario

aerial photograph and "grid" used in the model

- 24h prediction in < 2 s without spatiotemporal wind model
- **"Lumped" firebrands + gas** motion
- 72-91% accuracy when comparing burnt structures within 50% isoline

Academic validation suggests model is promising

→ more extensive validation and software development performed by Pinepeak Ltd

extent of fire with 50% chance

Athens fire, 4 Jun 2022

classified land

FLAMESIGHT

- Large WUI fire portfolio
- Layers of inputs built on *static* or *probabilistic* historical & satellite data
- GPU-enhanced and cloud-based simulations

Risk aggregation

VERSITY OF

MBRIDGE

Pinepeak

+ firefighting actions

Connection with other models/research

Enough "placeholders" to accept information from partners/sources

- **Before the fire**: fuel and home "hardening" data, remote sensing & ML for fire biomass classification and behaviour, weather-landscape turbulence data
- **During the fire**: early warning systems; fire/wind interactions; smoke dispersion; firefighting actions; data assimilation

Current developments

- "Poor man's CFD" to get local changes due to ravines, separation or wakes
- Separate gas/flame (many different "particles" from multi-layer cells)
- 3-D motions (ABL anisotropic turbulence, firebrand history and landing distance)
- Optimisation use cases for firefighting and land management

Conclusions

- Novel model combining features of Lagrangian turbulent dispersion & cellular automata
- Model **addresses many challenges** in the wildfire spread modelling domain: inhomogeneous terrains & WUI
- Academic validation shows promise; model refinements are necessary and ongoing
- **Pinepeak Ltd** performs further validation and software development
- Many opportunities for **data exchange** and coupling

Thank you for your attention!

Contact Dr Savvas Gkantonas

sg834@cam.ac.uk savvas.gkantonas@pinepeak.co.uk

