

NATIONAL ACADEMIES

International Workshop on Wildfire Modeling & Al March 17 - 18, 2025

AGNI-NAR: AN ASYNCHRONOUS GRAPH MODEL FOR SIMULATING BUILT ENVIRONMENT DAMAGE IN THE WILDLAND URBAN INTERFACE

Hussam Mahmoud

George T. Abell Professor in Infrastructure

Department of Civil and Environmental Engineering Colorado State University

March 18, 2025

- Motivations
- Vulnerability
- Damage Assessment
- Communicating Risk
- Discussion and Future Work
- Questions

Large Losses and Probabilistic Risk Assessment

Wildfires as a Global Issue

Colorado State

- Yearly expenditures on managing wildfires exceed US\$1 billion
- Current fire suppression tactics of wildland fires have led to a rise in the frequency of high-intensity fires

Wildfires are a part of nature, and we simply need to co-exist with fires

How fires propagate in communities is largely unknown

Mahmoud (2023), Nature

Motivation

The pressing need lies in exploring alternative directions to quantify WUI risk of communities

Wildland and Community Propagation Models

Graph Theory Application (1)

- Two analysis can be conducted with the AGNI-NAR model
 - Most probable path to calculate the fire boundary.
 - Relative venerability to determine likelihood of damage for a given fire boundary.

Graph Theory Application (2)

Discontinuous Fuels inside Communities !

Discontinuous Propagation inside Communities !

Probability of Ignition

- Each node classified into 'Ignitable' or 'Non-Ignitable'
- Probability of ignition between 2 nodes defined as

$$P_{tr}^{(i,j)} = \begin{cases} \min\left(P_{total}^{(i,j)}, 1\right) & if\{j \neq W_{(m)}: i = W_{(m)}\}_{m \in \mathbb{R}} \\ P_{cond}^{(i,j)} & if\{j = W_{(m)}: i = W_{(m)}\}_{m \in \mathbb{R}} \\ - P_{total}^{(i,j)} = \left(P_{conv}^{(i,j)} \cup P_{rad}^{(i,j)} \cup P_{ember}^{(i,j)}\right) \end{cases}$$

 $P_{conv}^{(i,j)} = \text{Probability of ignition due to Convection}$ $P_{rad}^{(i,j)} = \text{Probability of ignition due to Radiation}$ $P_{ember}^{(i,j)} = \text{Probability of ignition due to Ember Spotting}$ $P_{cond}^{(i,j)} = \text{Probability of ignition due to Conduction}$ $W_{(m)} = \text{Node set for Way } m$

Convection and Ember Model

Radiation Model

 Stefan-Boltzmann law used to calculate radiation flux

$$q_{(k,l)}^{(m,n)} = \begin{pmatrix} A_{(k)}^{(m)} v f_{(k,l)}^{(m,n)} \epsilon_{(k)}^{(m)} \sigma \left(T_f^4 - T_a^4\right) \end{pmatrix}$$

$$Area \qquad View \\ factor \qquad Emissivity \qquad Temperature$$

- Interaction between each possible source-target surface pair evaluated
- Independent view factors found due to varying relative surface inclination & size
- Net flux on each surface obtained as sum of flux from all surfaces of source way

Damage Assessment

Survivability Likelihood

Damage Prediction for Camp Fire

Chulahwat et al. (2022) Sci. Rep.

85% accuracy between observed and predicted damage

Damage Prediction for Marshall Fire

72% accuracy between observed and predicted damage

Damage Prediction for Marshall Fire (1)

Zoomed-in comparisons are good although some local behavior is not captured such as firefighting efforts and the impact of defensible space fuel due to lack of data

Damage Prediction for Marshall Fire (2)

Vulnerability and Risk Reduction

Targeted Mitigation

Sensitivity Analysis Results

Wildfire Mitigation (Marshall Fire)

19

Vegetation Mitigation

- Wildfire propagation shown after introduction of a buffer zone (750 x 2500 m) created by removing vegetation areas
- The results demonstrate that the effectiveness of the buffer zone reduces significantly at higher wind speeds

Future Work

Fire Mitigation Policies

Time-Dependent Propagation – Lahaina 2023

Fuel Interaction, Refined Wind, and Automated Data

- Vulnerability versus risk.
- The role of urban growth and climate change.
- Balancing acceptable structural losses and ecological health.
- The social dilemma of enforcing mitigations.

THANK YOU!

QUESTIONS?

For more information hussam.mahmoud@colostate.edu

Or visit us at http://www.engr.colostate.edu/~hmahmoud

GORDON AND BETTY MOORE FOUNDATION

National Institute of Standards and Technology U.S. Department of Commerce

