Evaluating wildfire vulnerability of dwellings using fuzzy logic and expert judgement approaches

Elsa Pastor

Other contributors: Alba Àgueda, Pascale Vacca, Eulàlia Planas

International Workshop on Wildfire Modeling & Al Madrid, March 17-18, 2025

CONTENTS

Wildfire risk analysis at property scale

Vulnerability Assessment Tool

Implementation opportunities and challenges

IVERSITAT POLITÈCNICA DE CATALUNY

BARCELONATECH Centre for Technological Risk Studies

UPC

WILDFIRE RISK ANALYSIS AT PROPERTY SCALE The WUI fire problem is characterized by the interaction of multiple phenomena of diverse nature occurring a **different observation scales**

The three scales are **interrelated** and need to be taken into account when studying WUI fire phenomena

or Technological Risk Studie

RISK FACTORS

Structural characteristics

Man-made

1.t

Vulnerability Hazard

Wildfuels

IWWM&AI, Madrid, March 17-18, 2025 4

PATHWAYS LEADING TO BUILDING IGNITION

Vacca et al.,. 2020(JSSR)

IWWM&AI, Madrid, March 17-18, 2025 5

VULNERABILITY ASSESSMENT TOOL

• Main characteristics

- Vulnerability assessment rationale
- Initial testing and implementation
- Current improvements

(Àgueda et al., 2023: Vacca, 2023)

SPECIAL ISSUE | RESEARCH PAPER https://doi.org/10.1071/WF22134

Evaluating wildfire vulnerability of Mediterranean dwellings using fuzzy logic applied to expert judgement

Alba Àgueda^{A,*}, Pascale Vacca^A, Eulalia Planas^A, and Elsa Pastor^A

IVERSITAT POLITÈCNICA DE CATALUNYA

BARCELONATECH Centre for Technological Risk Studies

Ph.D. Thesis

Fire Risk Analysis Framework at the Wildland-Urban Interface

Pascale Vacca

Advisors: Prof. Elsa Pastor Ferrer Prof. Eulàlia Planas Cuchi

> Submitted to the Universitat Politècnica de Catalunya for the degree of Doctor of Philosophy 2023

Centre for Technological Risk Studies

MAIN CHARACTERISTICS

- Main aim: to identify building and property vulnerability in a quantitative way
- **Target user:** homeowner at the WUI (Mediterranean Europe)
- **Type:** questionnaire-based (checklist):
 - Building characteristics (#14)

Shutters	Do you have protection for all your windows/glazing systems (i.e. shutters)?	Ornamental vegetation	Are the hedges aligned with the wind direction or the main slope?
	 Yes INO What material are the shutters made of? Wood IPVC 		 □ Yes □ No If you have ornamental bushes, are they less than 5 m wide? □ Yes □ No
	□ Aluminium □ Fire resistant materials	Man-made fuels	Are there any artificial fuels (e.g. outdoor furniture, stored materials, gas canisters, small sheds, wood piles) located
Roof	Is your roof covering or your roof assembly made of fire-rated material (e.g. clay tiles, concrete tiles, asphalt glass fibre composition singles, slate, etc.)?		within 5 m from glazing systems?
	□ Yes □ No Are there missing, displaced or broken tiles?		Are there any combustible materials (including ornamental vegetation, storage spaces, or combustible eaves) located within 2 m of LPG tanks
	🗆 Yes 🗆 No		□ Yes □ No
[]	[]	[]	[]

Surroundings (#45) ٠

VULNERABILITY ASSESSMENT RATIONALE

- Modelling:
 - Based on fault tree analysis (top event: fire entrance inside a building)
 - Probabilities assigned to basic events (e,.g. failure of windows, poorly managed fuels in the property, etc.) based on *fuzzy preferences of WUI experts*

Fuzzy logic

 Mathematical approach that handles **uncertainty** and imprecision by allowing partial truths instead of strict "true or false" (binary) values.

"The weather is cold / warm / hot"

- Cold: Full membership at 0°C, decreasing to 0 at 20°C.
- Warm: Starts at 10 °C, peaks at 20 °C, and decreases at 30 °C.
- Hot: Starts at 25°C, increasing to full membership at 40°C.

At 35 °C, the fuzzy system would consider the temperature mostly hot (67%) but not completely (it reaches full "hot" at 40 °C).

UNIVERSITAT POLITÈCNICA DE CATALUNY BARCELONATECH Centre for Technological Risk Studies

VULNERABILITY ASSESSMENT RATIONALE

Fuzzy Rules

• If-then statement that describes how fuzzy variables relate to each other.

"If temperature is **high** and humidity is **low**, then wildfire risk is **high**."

"If the roof is **highly** combustible and has **bad** maintenance, the probability of failure is **high**"

IWWM&AI, Madrid, March 17-18, 2025 9

VULNERABILITY ASSESSMENT RATIONALE

Fuzzy Inference Process

• A poll of experts was used to generate membership functions and fuzzy rules:

IWWM&AI, Madrid, March 17-18, 2025 10

IVERSITAT POLITÈCNICA DE CATALUN

BARCELONATECH Centre for Technological Risk Studies

UPC

INITIAL TESTING AND IMPLEMENTATION

- Testing
 - The tool was tested using three case studies in which there were several dwellings affected with different degree of damage.
 - Overall, homes and properties that scored a low probability of fire entrance did not experience fire entrance

Lloret de Mar, SP, July 2021

- ~6 ha burned
- Analysis of 5 affected homes

Castro Marim and Tavira, PT, (2021)

~ 6700 ha burned

•

Analysis of 6 affected homes

Pont de Vilomara, SP, (2022)

- ~ 1700 ha burned
- Analysis of 6 affected homes

11

INITIAL TESTING AND IMPLEMENTATION

Pont de Vilomara, SP, (2022)

- 1	cci		an	al	VC	0
	221	ue.	a	a	y S	eu

Prob. of failure of the glazing system	70
Prob. of failure of the roof	65
Prob. of failure of the vents	65
Prob. of failure of the façade envelope	14
Prob. of failure of the semi-confined space	35
Prob. of failure of the building	98
Prof. of fire spreading through the external ring of the property $(10 - 30 \text{ m})$	88
Prof. of fire spreading through the internal ring of the property (<10m)	83
Probability of fire entrance	81

H2.6	
– double	ра

110 0

No chuttore

No shutters – double pane glazing
Non-combustible, badly maintained
Combustible vent protection
Non-combustible, > 12 cm, 0% window coverage
50% volume occupied by combustible material

0% compliance of identified best practices for all fuels

57% compliance for ornamental vegetation, 25% for artificial fuels, 33% for wildland vegetation

INITIAL TESTING AND IMPLEMENTATION

- Implementation
 - WUICOM- BCN "Fire resilient communities of Barcelona" (2023)
 - VAT tool used to analyse vulnerabilities in Collserola neighbourhoud "Mas Sauró"
 - Drill planning and emergency management. House triage for horizontal confinement.

Ajuntament de Barcelona

IWWM&AI, Madrid, March 17-18, 2025 14

CURRENT IMPROVEMENTS

FIREPRIME project: *"European Program for Wildfire-Prepared Communities"* (2024-2026)

- Algorithm improvements to include:
 - Other building practices and vegetation type in central and northern Europe
 - Risk assessment (rather than vulnerability assessment), including the hazard layer (European Forest Information System – EFFIS)
 - List of recommendations linked to the results obtained

Co-funded by

the European Union

Co-funded by

the European Union

CURRENT IMPROVEMENTS

FIREPRIME project: "European Program for Wildfire-Prepared Communities" (2024-2026)

CURRENT IMPROVEMENTS

FIREPRIME project: "European Program for Wildfire-Prepared Communities" (2024-2026)

- Testing (Spring 2025):
 - Sant Cugat municipality (Barcelona, Spain)
 - Local stakeholders: civil protection, fire agencies, self-protection neighbourhood units, Collserola Natural Park rangers
 - Residents at the WUI (selected dwellings, general distribution)
 - Heiming (Tyrol) and Berga (Sweden): (selected dwellings)

IWWM&AI, Madrid, March 17-18, 2025 16

IMPLEMENTATION OPPORTUNITIES AND CHALLENGES

Opportunities

- Increased awareness and preparedness: better understanding of wildfire risks, encouraging proactive mitigation efforts.
- Community engagement: The app can foster a sense of shared responsibility by connecting residents with local authorities and neighbours.
- **Personalized risk assessment:** the app provides tailored recommendations to mitigate wildfire risk.
- Integration with fire agencies: If linked to emergency services, data of the assessments can serve to improve risk prevention and emergency planning.

Challenges

- User adoption and engagement: Some residents might not perceive wildfire risk as urgent or may resist using new technology.
- **Data accuracy and reliability:** Ensuring up-to-date hazard data and accurate vulnerability modelling is complex.
- **Privacy concerns:** users may be hesitant to share data.

entre for Technological Risk Studie

Thanks for your attention

More information: Elsa Pastor

elsa.pastor@upc.edu

www.certec.upc.edu

@CERTEC_UPC