Immunity, stress and sub-lethal effects of neonicotinoids

Francesco Pennacchio

University of Napoli "Federico II" Department of Agricultural Sciences Portici (NA) - ITALY

Multitrophic Interactions

Interactions at metaorganism level

Holobiont phenotype is controlled by the hologenome

Kevin R. Theis et al. mSystems 2016;1:e00028-16

Lee & Hase, Nature Chemical Biology, 2014

Multifactorial regulation of immunity

Stress and Honeybee Immunity

EU – FP7

Pathogen loads are highly covariant in collapsing colonies

✓ Increased susceptibility to a diverse set of pathogens
✓ Co-infections can act synergistically

Cornman et al., 2012

The induced collapse experiment

low infested colonies (LIC)

>20 km

highly infested colonies (HIC)

Expression of immune genes

Dorsal expression is influenced by DWV

Influence on Dorsal: Varroa or DWV?

Nazzi et al., 2012

The down-regulation of the transcription factor dorsal-1A by RNAi promotes DWV replication

48 h

PATHOGENS

starting level in untreated bees

Nazzi et al., 2012

DWV titer positively correlates with honeybee immunosuppression

Nylon thread implantation

Di Prisco et al. PNAS 2016

A delicate balance underpins covert DWV infections

Varroa triggers immune reactions associated with a severe metabolic stress...

...which promote viral replication

Varroa acts as a vector and promotes DWV replication

SANC

Bee immunosuppression by DWV favours Varroa feeding and enhances mite's fitness

A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health

Gennaro Di Prisco^{a,1}, Desiderato Annoscia^{b,1}, Marina Margiotta^a, Rosalba Ferrara^a, Paola Varricchio^a, Virginia Zanni^b, Emilio Caprio^a, Francesco Nazzi^{b,2}, and Francesco Pennacchio^{a,2}

^aDipartimento di Agraria, Laboratorio di Entomologia "E. Tremblay," Università degli Studi di Napoli "Federico II," 80055 Portici (NA), Italy; and ^bDipartimento di Scienze AgroAlimentari Ambientali e Animali, Università degli Studi di Udine, 33100 Udine, Italy

Do stress factors acting on bee immunocompetence influence DWV replication?

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Transcriptomic and proteomic effects of a neonicotinoid insecticide mixture in the marine mussel (*Mytilus galloprovincialis*, Lam.)

Francesco Dondero ^{a,*,1}, Alessandro Negri ^{a,1}, Lara Boatti ^a, Francesco Marsano ^a, Flavio Mignone ^b, Aldo Viarengo ^a

* Department of Environmental and Life Sciences, Università del Piemonte Orientale Amedeo Avogadro, Alessandria, Italy

b Department of Structural Chemistry, University of Milan, Milan, Italy

"Thiacloprid elicited the modulation of gene transcription and mRNA metabolic processes: three ribonucleoproteins, and two transcription factors (mflj00348 protein, also known as "caterpiller" in mammals) were identified. The latter sequences, in human cells, may modulate T-cell activation, decrease the transcription of genes that are normally up-regulated after T-cell stimulation and delays degradation of NFKBIA/IKBA"

Neonicotinoid impact on honey bee immunity

Effect of insecticides on DWV replication in honey bees bearing covert infections

PNAS

Effect of insecticides on DWV replication in honey bees bearing covert infections

Neonicotinoids and honey bee antiviral immunity

PNAS

Lee & Hase, Nature Chemical Biology, 2014

SCIENTIFIC REPORTS

OPEN

Received: 19 December 2016 Accepted: 19 April 2017 Published online: 02 June 2017 Neonicotinoid-induced pathogen susceptibility is mitigated by *Lactobacillus plantarum* immune stimulation in a *Drosophila melanogaster* model

Brendan A. Daisley^{1,2}, Mark Trinder^{1,2}, Tim W. McDowell³, Hylke Welle^{1,2,4}, Josh S. Dube², Sohrab N. Ali^{2,5}, Hon S. Leong^{2,6}, Mark W. Sumarah³ & Gregor Reid^{1,2,6}

Microbiota priming of antiviral immunity

Sansone et al., 2015, Cell Host & Microbe 18, 571–581

SCIENTIFIC REPORTS

Received: 6 July 2017 Accepted: 18 September 2017 Published online: 18 October 2017

OPEN The neonicotinoid insecticide Clothianidin adversely affects immune signaling in a human cell line

Gennaro Di Prisco, Marco Iannaccone, Flora Ianniello, Rosalba Ferrara, Emilio Caprio, Francesco Pennacchio & Rosanna Capparelli

ELSEVIER

Contents lists available at ScienceDirect

Life Sciences

journal homepage: www.elsevier.com/locate/lifescie

Specific immune responses in mice following subchronic exposure to acetamiprid

Soumaya Marzouki^{a,1}, Ines Bini Dhouib^{b,c,1}, Chaouki Benabdessalem^a, Raja Rekik^a, Raoudha Doghri^d, Ammar Maroueni^e, Zakaria Bellasfar^e, Saloua Fazaa^c, Jihene Bettaieb^{a,f}, Mohamed Ridha Barbouche^{a,f}, Melika Ben Ahmed^{a,f,*}

Results: The ACE-treated mice showed a significant immunosuppression of the specific humoral response with a restorative effect of curcumin when administered with ACE. Similarly, ACE significantly decreased the level of splenocyte proliferation after either a non specific or a specific activation. Curcumin partially restores the antigen specific cellular immune response. Moreover, when administered alone, curcumin significantly inhibits the proliferative responses to the mitogen confirming its anti-mitogenic effect. Histological analysis showed alteration of spleens of mice exposed to ACE.

Significance: Altogether, our data indicated that ACE could potentially be harmful to the immune system.

Wild and managed bees are exposed to a number of interacting stressors

Multifactorial induction of hive collapse

- ✓ Varroa infestation and DWV replication contribute to 70% of colony losses
- A single factor may not be sufficient to trigger colony losses
- ✓ A combination of stressors appears to impact hive health

Kielmanowicz et al., 2015

Conclusions

✓DWV mediates honeybee immunosuppression by targeting NF-kB signaling

✓ *Varroa* mites promote DWV replication, exacerbate immunosuppression and enhance their fitness

✓ Neonicotinoids upregulate an inhibitor of NF-kB activation and triggers immunosuppression, which promotes DWV replication

✓ Nutrition cross-modulates honey bee immune pathways

The "Sword of Damocles" paradigm

Nazzi and Pennacchio – Viruses, 2018

University of Napoli "Federico II" Department of Agricultural Sciences

